Search results
Results from the WOW.Com Content Network
Various operators for delimited continuations have been proposed in the research literature. [8]One independent proposal [5] is based on continuation-passing style (CPS) -- i.e., not on continuation frames—and offers two control operators, shift and reset, that give rise to static rather than to dynamic delimited continuations. [9]
Figures 2-5 further illustrate construction of Bode plots. This example with both a pole and a zero shows how to use superposition. To begin, the components are presented separately. Figure 2 shows the Bode magnitude plot for a zero and a low-pass pole, and compares the two with the Bode straight line plots.
Optimal control is a particular control technique in which the control signal optimizes a certain "cost index": for example, in the case of a satellite, the jet thrusts needed to bring it to desired trajectory that consume the least amount of fuel. Two optimal control design methods have been widely used in industrial applications, as it has ...
The step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory , step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time.
As a complementary example, in an expression (e1 (call/cc f)), the continuation for the sub-expression (call/cc f) is (lambda (c) (e1 c)), so the whole expression is equivalent to (f (lambda (c) (e1 c))). In other words it takes a "snapshot" of the current control context or control state of the program as an object and applies f to it.
For a rational and continuous-time system, the condition for stability is that the region of convergence (ROC) of the Laplace transform includes the imaginary axis.When the system is causal, the ROC is the open region to the right of a vertical line whose abscissa is the real part of the "largest pole", or the pole that has the greatest real part of any pole in the system.
The usual objective of control theory is to control a system, often called the plant, so its output follows a desired control signal, called the reference, which may be a fixed or changing value. To do this a controller is designed, which monitors the output and compares it with the reference.
Lead–lag compensators influence disciplines as varied as robotics, satellite control, automobile diagnostics, LCDs and laser frequency stabilisation. They are an important building block in analog control systems, and can also be used in digital control. Given the control plant, desired specifications can be achieved using compensators.