enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Potassium oxide - Wikipedia

    en.wikipedia.org/wiki/Potassium_oxide

    Other possibility is to heat potassium peroxide at 500 °C which decomposes at that temperature giving pure potassium oxide and oxygen. 2 K 2 O 2 → 2 K 2 O + O 2 ↑. Potassium hydroxide cannot be further dehydrated to the oxide but it can react with molten potassium to produce it, releasing hydrogen as a byproduct. 2 KOH + 2 K ⇌ 2 K 2 O ...

  3. Water-reactive substances - Wikipedia

    en.wikipedia.org/wiki/Water-reactive_substances

    Magnesium has a mild reaction with cold water. The reaction is short-lived because the magnesium hydroxide layer formed on the magnesium is almost insoluble in water and prevents further reaction. Mg(s) + 2H 2 O(l) Mg(OH) 2 (s) + H 2 (g) [11] A metal reacting with cold water will produce a metal hydroxide and hydrogen gas.

  4. Potassium superoxide - Wikipedia

    en.wikipedia.org/wiki/Potassium_superoxide

    Potassium superoxide is a source of superoxide, which is an oxidant and a nucleophile, depending on its reaction partner. [8] Upon contact with water, it undergoes disproportionation to potassium hydroxide, oxygen, and hydrogen peroxide: 4 KO 2 + 2 H 2 O → 4 KOH + 3 O 2 2 KO 2 + 2 H 2 O → 2 KOH + H 2 O 2 + O 2 [9] It reacts with carbon ...

  5. Electrolysis of water - Wikipedia

    en.wikipedia.org/wiki/Electrolysis_of_water

    In the case of water electrolysis, Gibbs free energy represents the minimum work necessary for the reaction to proceed, and the reaction enthalpy is the amount of energy (both work and heat) that has to be provided so the reaction products are at the same temperature as the reactant (i.e. standard temperature for the values given above ...

  6. Thermochemical cycle - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_cycle

    the work output W is the "noble" energy stored in the hydrogen and oxygen products (e.g. released as electricity during fuel consumption in a fuel cell). It thus corresponds to the free Gibbs energy change of water-splitting ΔG, and is maximum according to Eq.(3) at the lowest temperature of the process (T°) where it is equal to ΔG°.

  7. Thermal decomposition - Wikipedia

    en.wikipedia.org/wiki/Thermal_decomposition

    A classical example is the decomposition of mercuric oxide to give oxygen and mercury metal. The reaction was used by Joseph Priestley to prepare samples of gaseous oxygen for the first time. When water is heated to well over 2,000 °C (2,270 K; 3,630 °F), a small percentage of it will decompose into OH, monatomic oxygen, monatomic hydrogen, O ...

  8. Reactive oxygen species - Wikipedia

    en.wikipedia.org/wiki/Reactive_oxygen_species

    Catalase, which is concentrated in peroxisomes located next to mitochondria, reacts with the hydrogen peroxide to catalyze the formation of water and oxygen. Glutathione peroxidase reduces hydrogen peroxide by transferring the energy of the reactive peroxides to a sulfur-containing tripeptide called glutathione. The sulfur contained in these ...

  9. Potassium peroxide - Wikipedia

    en.wikipedia.org/wiki/Potassium_peroxide

    Potassium peroxide is an inorganic compound with the molecular formula K 2 O 2. It is formed as potassium reacts with oxygen in the air, along with potassium oxide (K 2 O) and potassium superoxide (KO 2). Crystal structure. Potassium peroxide reacts with water to form potassium hydroxide and oxygen: 2 K 2 O 2 + 2 H 2 O → 4 KOH + O 2 ↑