Search results
Results from the WOW.Com Content Network
The fundamental theorem of finitely generated abelian groups can be stated two ways, generalizing the two forms of the fundamental theorem of finite abelian groups.The theorem, in both forms, in turn generalizes to the structure theorem for finitely generated modules over a principal ideal domain, which in turn admits further generalizations.
To qualify as an abelian group, the set and operation, (,), must satisfy four requirements known as the abelian group axioms (some authors include in the axioms some properties that belong to the definition of an operation: namely that the operation is defined for any ordered pair of elements of A, that the result is well-defined, and that the ...
The 5th roots of unity in the complex plane form a group under multiplication. Each non-identity element generates the group. In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses.
For example, the integers are a generator of the category of abelian groups (since every abelian group is a quotient of a free abelian group). This is the origin of the term generator. The approximation here is normally described as generators and relations.
The fundamental theorem of abelian groups states that every finitely generated abelian group is a finite direct product of primary cyclic and infinite cyclic groups. Because a cyclic group is abelian, each of its conjugacy classes consists of a single element. A cyclic group of order n therefore has n conjugacy classes.
Every subgroup of a free abelian group is itself free abelian; this fact allows a general abelian group to be understood as a quotient of a free abelian group by "relations", or as a cokernel of an injective homomorphism between free abelian groups. The only free abelian groups that are free groups are the trivial group and the infinite cyclic ...
The main structure theorem about this group is the Mordell–Weil theorem which shows this group is in fact a finitely-generated abelian group. Moreover, there are many conjectures related to this group, such as the Birch and Swinnerton-Dyer conjecture which relates the rank of A ( K ) {\displaystyle A(K)} to the zero of the associated L ...
In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H.This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.