Search results
Results from the WOW.Com Content Network
The energy and momentum of an object measured in two inertial frames in energy–momentum space – the yellow frame measures E and p while the blue frame measures E ′ and p ′. The green arrow is the four-momentum P of an object with length proportional to its rest mass m 0.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields.
The Abraham–Minkowski controversy is a physics debate concerning electromagnetic momentum within dielectric media. [1] [2] Two equations were first suggested by Hermann Minkowski (1908) [3] and Max Abraham (1909) [4] [5] for this momentum. They predict different values, from which the name of the controversy derives. [6]
In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics , it places a heavy emphasis on the commonalities between the topics covered.
The sources of any gravitational field (matter and energy) is represented in relativity by a type (0, 2) symmetric tensor called the energy–momentum tensor. It is closely related to the Ricci tensor. Being a second rank tensor in four dimensions, the energy–momentum tensor may be viewed as a 4 by 4 matrix.
The Dirac equation relativistic spectrum is, however, easily recovered if the orbital-momentum quantum number l is replaced by total angular-momentum quantum number j. [12] In January 1926, Schrödinger submitted for publication instead his equation, a non-relativistic approximation that predicts the Bohr energy levels of hydrogen without fine ...
In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]
The symmetry of the tensor is as for a general stress–energy tensor in general relativity. The trace of the energy–momentum tensor is a Lorentz scalar; the electromagnetic field (and in particular electromagnetic waves) has no Lorentz-invariant energy scale, so its energy