Search results
Results from the WOW.Com Content Network
Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length , then applying the Pythagorean theorem and definitions of the trigonometric ratios.
For all inverse hyperbolic functions, the principal value may be defined in terms of principal values of the square root and the logarithm function. However, in some cases, the formulas of § Definitions in terms of logarithms do not give a correct principal value, as giving a domain of definition which is too small and, in one case non-connected.
When this notation is used, inverse functions could be confused with multiplicative inverses. The notation with the "arc" prefix avoids such a confusion, though "arcsec" for arcsecant can be confused with "arcsecond". Just like the sine and cosine, the inverse trigonometric functions can also be expressed in terms of infinite series.
These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. [ 1 ] [ 2 ] One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision.
The notation was introduced by Cayley who starts by calling = the Jacobi elliptic amplitude in the degenerate case where the elliptic modulus is =, so that + reduces to . [21] This is the inverse of the integral of the secant function. Using Cayley's notation,
Write the functions without "co" on the three left outer vertices (from top to bottom: sine, tangent, secant) Write the co-functions on the corresponding three right outer vertices (cosine, cotangent, cosecant) Starting at any vertex of the resulting hexagon: The starting vertex equals one over the opposite vertex.
Explicitly, they are defined below as functions of the known angle A, where a, b and h refer to the lengths of the sides in the accompanying figure. In the following definitions, the hypotenuse is the side opposite to the 90-degree angle in a right triangle; it is the longest side of the triangle and one of the two sides adjacent to angle A.
arcoth – inverse hyperbolic cotangent function. arcsch – inverse hyperbolic cosecant function. (Also written as arcosech.) arcsec – inverse secant function. arcsin – inverse sine function. arctan – inverse tangent function. arctan2 – inverse tangent function with two arguments. (Also written as atan2.) arg – argument of. [2] arg ...