Search results
Results from the WOW.Com Content Network
Cycle graph, a graph that consists of a single cycle; Chordal graph, a graph in which every induced cycle is a triangle; Directed acyclic graph, a directed graph with no directed cycles; Forest, a cycle-free graph; Line perfect graph, a graph in which every odd cycle is a triangle; Perfect graph, a graph with no induced cycles or their ...
A path in a directed graph is a sequence of edges having the property that the ending vertex of each edge in the sequence is the same as the starting vertex of the next edge in the sequence; a path forms a cycle if the starting vertex of its first edge equals the ending vertex of its last edge. A directed acyclic graph is a directed graph that ...
A directed cycle graph of length 8. A directed cycle graph is a directed version of a cycle graph, with all the edges being oriented in the same direction. In a directed graph, a set of edges which contains at least one edge (or arc) from each directed cycle is called a feedback arc set.
A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
The circuit rank controls the number of ears in an ear decomposition of a graph, a partition of the edges of the graph into paths and cycles that is useful in many graph algorithms. In particular, a graph is 2-vertex-connected if and only if it has an open ear decomposition. This is a sequence of subgraphs, where the first subgraph is a simple ...