Search results
Results from the WOW.Com Content Network
The decrease in the electrochemical gradient causes a reduction in the electrical signals going to the brain. Thus, in this example, more light hitting the photoreceptor results in the transduction of a signal into fewer electrical impulses, effectively communicating that stimulus to the brain.
The changes elicited by ligand binding (or signal sensing) in a receptor give rise to a biochemical cascade, which is a chain of biochemical events known as a signaling pathway. When signaling pathways interact with one another they form networks, which allow cellular responses to be coordinated, often by combinatorial signaling events. [2]
The brain and spinal cord are interwoven with the body and interact with other organ systems through the somatic, autonomic and enteric nervous systems. [1] Neural pathways regulate brain–body interactions and allow to sense and control its body and interact with the environment.
The Insulin Signaling Pathway; The Sonic hedgehog Signaling Pathway; The Wnt signaling pathway; The JAK-STAT signaling pathway; The Adrenergic receptor Pathways; The Acetylcholine receptor Pathways; The Mitogen-activated protein kinase cascade; Conversely, negative cascades include events that are in a circular fashion, or can cause or be ...
At the end, the end of a signal pathway leads to the regulation of a cellular activity. This response can take place in the nucleus or in the cytoplasm of the cell. A majority of signaling pathways control protein synthesis by turning certain genes on and off in the nucleus. [44]
Trace amines have a modulatory effect on neurotransmission in monoamine pathways (i.e., dopamine, norepinephrine, and serotonin pathways) throughout the brain via signaling through trace amine-associated receptor 1. [45] [46] A brief comparison of these systems follows:
The upstream signaling pathway is triggered by the binding of a signaling molecule, a ligand, to a receiving molecule, a receptor. Receptors and ligands exist in many different forms, and only recognize/bond to particular molecules. Upstream extracellular signaling transduce a variety of intracellular cascades. [1]
The serotonin created by the brain comprises around 10% of total body serotonin. The majority (80-90%) is found in the gastrointestinal (GI) tract. [15] [16] It travels around the brain along the medial forebrain bundle and acts on serotonin receptors. In the peripheral nervous system (such as in the gut wall) serotonin regulates vascular tone.