Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]:
It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his Ars Conjectandi (1713). [2] The mathematical formalization and advanced formulation of the Bernoulli trial is known as the Bernoulli process. Since a Bernoulli trial has only two possible outcomes, it can be framed as a "yes or no" question. For example:
A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process; for a single trial, i.e., n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the binomial test of statistical significance. [1]
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
A Bernoulli process is a finite or infinite sequence of independent random variables X 1, X 2, X 3, ..., such that for each i, the value of X i is either 0 or 1; for all values of , the probability p that X i = 1 is the same. In other words, a Bernoulli process is a sequence of independent identically distributed Bernoulli trials.
Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...
In other words, the negative binomial distribution is the probability distribution of the number of successes before the rth failure in a Bernoulli process, with probability p of successes on each trial. A Bernoulli process is a discrete time process, and so the number of trials, failures, and successes are integers. Consider the following example.