enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical formulation of the Standard Model - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    In particular, under weak isospin SU(2) transformations the left-handed particles are weak-isospin doublets, whereas the right-handed are singlets – i.e. the weak isospin of ψ R is zero. Put more simply, the weak interaction could rotate e.g. a left-handed electron into a left-handed neutrino (with emission of a W − ), but could not do so ...

  3. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.

  4. Foldy–Wouthuysen transformation - Wikipedia

    en.wikipedia.org/wiki/Foldy–Wouthuysen...

    There is a close algebraic analogy between the Helmholtz equation (governing scalar optics) and the Klein–Gordon equation; and between the matrix form of the Maxwell's equations (governing vector optics) and the Dirac equation. So it is natural to use the powerful machinery of standard quantum mechanics (particularly, the Foldy–Wouthuysen ...

  5. Derivations of the Lorentz transformations - Wikipedia

    en.wikipedia.org/wiki/Derivations_of_the_Lorentz...

    In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.

  6. Symplectic integrator - Wikipedia

    en.wikipedia.org/wiki/Symplectic_integrator

    Symplectic integrators form the subclass of geometric integrators which, by definition, are canonical transformations. They are widely used in nonlinear dynamics, molecular dynamics, discrete element methods, accelerator physics, plasma physics, quantum physics, and celestial mechanics.

  7. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.

  8. Parameterized post-Newtonian formalism - Wikipedia

    en.wikipedia.org/wiki/Parameterized_post...

    In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation.

  9. Korteweg–De Vries equation - Wikipedia

    en.wikipedia.org/wiki/Korteweg–De_Vries_equation

    Cnoidal wave solution to the Korteweg–De Vries equation, in terms of the square of the Jacobi elliptic function cn (and with value of the parameter m = 0.9). Numerical solution of the KdV equation u t + uu x + δ 2 u xxx = 0 (δ = 0.022) with an initial condition u(x, 0) = cos(πx).