Search results
Results from the WOW.Com Content Network
Embrittlement is used to describe any phenomena where the environment compromises a stressed material's mechanical performance, such as temperature or environmental composition. This is oftentimes undesirable as brittle fracture occurs quicker and can much more easily propagate than ductile fracture, leading to complete failure of the equipment.
The failure of a material is usually classified into brittle failure or ductile failure . Depending on the conditions (such as temperature, state of stress, loading rate) most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.
In fracture mechanics, the stress intensity factor (K) is used to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. [1] It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle ...
Brittle fracture in glass Brittle fracture in cast iron tensile testpieces. A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Breaking is often accompanied ...
Stress triaxiality has important applications in fracture mechanics and can often be used to predict the type of fracture (i.e. ductile or brittle) within the region defined by that stress state. A higher stress triaxiality corresponds to a stress state which is primarily hydrostatic rather than deviatoric .
Fracture processes "grind"/"roll"/"slide" grains past each other creating the rounded appearance of the individual grains. Cataclasis, or comminution, is a non-elastic brittle mechanism that operates under low to moderate homologous temperatures, low confining pressure and relatively high strain rates.
Brittle fracture in glass Fracture of an aluminum crank arm of a bicycle, where the bright areas display a brittle fracture, and the dark areas show fatigue fracture. In brittle fracture, no apparent plastic deformation takes place before fracture. Brittle fracture typically involves little energy absorption and occurs at high speeds—up to ...
To cause brittle fracture by crack propagation of the initial crack, the external tensile stress must overcome the compressive residual stress before the crack tips experience sufficient tensile stress to propagate. The manufacture of some swords utilises a gradient in martensite formation to produce particularly hard edges (notably the katana).