Search results
Results from the WOW.Com Content Network
Photoacoustic spectroscopy is the measurement of the effect of absorbed electromagnetic energy (particularly of light) on matter by means of acoustic detection. The discovery of the photoacoustic effect dates to 1880 when Alexander Graham Bell showed that thin discs emitted sound when exposed to a beam of sunlight that was rapidly interrupted with a rotating slotted disk.
Photoacoustic spectroscopy is also useful for the opposite case of opaque samples, where the absorption is essentially complete. In an arrangement where a sensor is placed in a gaseous phase above the sample and the light impinges the sample from above, the photoacoustic signal results from an absorption zone close to the surface.
Photoacoustic imaging or optoacoustic imaging is a biomedical imaging modality based on the photoacoustic effect.Non-ionizing laser pulses are delivered into biological tissues and part of the energy will be absorbed and converted into heat, leading to transient thermoelastic expansion and thus wideband (i.e. MHz) ultrasonic emission.
The amplitude of the pressure wave provides information about the local absorption and propagation of energy in the sample, while the time interval between the illumination pulse and arrival of the ultrasound wave at the detector provides information about the distance between the detector and photoecho source. Optoacoustic data collected over ...
Noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy (NICE-OHMS) is an ultra-sensitive laser-based absorption technique that utilizes laser light to assess the concentration or the amount of a species in gas phase by absorption spectrometry (AS).
In saturated absorption spectroscopy, two counter-propagating, overlapped laser beams are sent through a sample of atomic gas. One of the beams stimulates photon emission in excited atoms or molecules when the laser's frequency matches the transition frequency.
Archaeological materials, such as bone, organic residues, hair, or sea shells, can serve as substrates for isotopic analysis. Carbon, nitrogen and zinc isotope ratios are used to investigate the diets of past people; these isotopic systems can be used with others, such as strontium or oxygen, to answer questions about population movements and cultural interactions, such as trade.
The Fraunhofer lines are typical spectral absorption lines. Absorption lines are narrow regions of decreased intensity in a spectrum, which are the result of photons being absorbed as light passes from the source to the detector. In the Sun, Fraunhofer lines are a result of gas in the Sun's atmosphere and outer photosphere. These regions have ...