enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glucose - Wikipedia

    en.wikipedia.org/wiki/Glucose

    In plants and some prokaryotes, glucose is a product of photosynthesis. [70] Glucose is also formed by the breakdown of polymeric forms of glucose like glycogen (in animals and mushrooms) or starch (in plants). The cleavage of glycogen is termed glycogenolysis, the cleavage of starch is called starch degradation. [88]

  3. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  4. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Including one H + for the transport reactions, this means that synthesis of one ATP requires 1 + 10/3 = 4.33 protons in yeast and 1 + 8/3 = 3.67 in vertebrates. This would imply that in human mitochondria the 10 protons from oxidizing NADH would produce 2.72 ATP (instead of 2.5) and the 6 protons from oxidizing succinate or ubiquinol would ...

  5. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    The pyruvate generated as an end-product of glycolysis is a substrate for the Krebs Cycle. [22] Glycolysis is viewed as consisting of two phases with five steps each. In phase 1, "the preparatory phase", glucose is converted to 2 d-glyceraldehyde-3-phosphate (g3p). One ATP is invested in Step 1, and another ATP is invested in Step 3.

  6. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red). Hydrogen ions, or protons , will diffuse from a region of high proton concentration to a region of lower proton concentration, and an electrochemical concentration gradient of protons across a membrane can be harnessed to ...

  7. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    Glucose reacts with oxygen in the following reaction, C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O. Carbon dioxide and water are waste products, and the overall reaction is exothermic. The reaction of glucose with oxygen releasing energy in the form of molecules of ATP is therefore one of the most important biochemical pathways found in living organisms.

  8. L-Glucose - Wikipedia

    en.wikipedia.org/wiki/L-Glucose

    l-Glucose is an organic compound with formula C 6 H 12 O 6 or O=CH[CH(OH)] 5 H, specifically one of the aldohexose monosaccharides. As the l-isomer of glucose, it is the enantiomer of the more common d-glucose. l-Glucose does not occur naturally in living organisms, but can be synthesized in the laboratory.

  9. Cori cycle - Wikipedia

    en.wikipedia.org/wiki/Cori_cycle

    Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.