enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite volume method for three-dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Finite volume method (FVM) is a numerical method. FVM in computational fluid dynamics is used to solve the partial differential equation which arises from the physical conservation law by using discretisation. Convection is always followed by diffusion and hence where convection is considered we have to consider combine effect of convection and ...

  3. Finite volume method - Wikipedia

    en.wikipedia.org/wiki/Finite_volume_method

    The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. [1] In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then ...

  4. Finite volume method for one-dimensional steady state diffusion

    en.wikipedia.org/wiki/Finite_volume_method_for...

    These equations can be different in nature, e.g. elliptic, parabolic, or hyperbolic. The first well-documented use of this method was by Evans and Harlow (1957) at Los Alamos. The general equation for steady diffusion can easily be derived from the general transport equation for property Φ by deleting transient and convective terms. [1]

  5. MUSCL scheme - Wikipedia

    en.wikipedia.org/wiki/MUSCL_scheme

    In the study of partial differential equations, the MUSCL scheme is a finite volume method that can provide highly accurate numerical solutions for a given system, even in cases where the solutions exhibit shocks, discontinuities, or large gradients.

  6. MacCormack method - Wikipedia

    en.wikipedia.org/wiki/MacCormack_method

    The application of MacCormack method to the above equation proceeds in two steps; a predictor step which is followed by a corrector step. Predictor step: In the predictor step, a "provisional" value of u {\displaystyle u} at time level n + 1 {\displaystyle n+1} (denoted by u i p {\displaystyle u_{i}^{p}} ) is estimated as follows

  7. List of finite element software packages - Wikipedia

    en.wikipedia.org/wiki/List_of_finite_element...

    BE, CN, and Fractional-Step-Theta schemes Predefined equations: Incompressible Navier-Stokes, heat transfer, convection-diffusion-reaction, linear elasticity, electromagnetics, pressure acoustics, Darcy's law, and support for custom PDE equations Miniapps and examples for Laplace, elasticity, Maxwell, Darcy, advection, Euler, Helmholtz, and others

  8. Godunov's scheme - Wikipedia

    en.wikipedia.org/wiki/Godunov's_scheme

    In numerical analysis and computational fluid dynamics, Godunov's scheme is a conservative numerical scheme, suggested by Sergei Godunov in 1959, [1] for solving partial differential equations. One can think of this method as a conservative finite volume method which solves exact, or approximate Riemann problems at each inter-cell boundary. In ...

  9. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.