Search results
Results from the WOW.Com Content Network
Copper(I) iodide is white, but samples often appear tan or even, when found in nature as rare mineral marshite, reddish brown, but such color is due to the presence of impurities. It is common for samples of iodide-containing compounds to become discolored due to the facile aerobic oxidation of the iodide anion to molecular iodine. [4] [5] [6]
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure.
The degree of dissociation in gases is denoted by the symbol α, where α refers to the percentage of gas molecules which dissociate. Various relationships between K p and α exist depending on the stoichiometry of the equation. The example of dinitrogen tetroxide (N 2 O 4) dissociating to nitrogen dioxide (NO 2) will be taken.
Copper is a chemical element with the symbol Cu (from Latin: cuprum) and the atomic number of 29. It is easily recognisable, due to its distinct red-orange color . Copper also has a range of different organic and inorganic salts , having varying oxidation states ranging from (0,I) to (III).
Some copper proteins form oxo complexes, which also feature copper(III). [20] With tetrapeptides, purple-colored copper(III) complexes are stabilized by the deprotonated amide ligands. [21] Complexes of copper(III) are also found as intermediates in reactions of organocopper compounds. [22] For example, in the Kharasch–Sosnovsky reaction.
The addition of Grignard reagents to alkynes is facilitated by a catalytic amount of copper halide. Transmetalation to copper and carbocupration are followed by transmetalation of the product alkene back to magnesium. The addition is syn unless a coordinating group is nearby in the substrate, in which case the addition becomes anti and yields ...
Lithium dimethylcopper (CH 3) 2 CuLi can be prepared by adding copper(I) iodide to methyllithium in tetrahydrofuran at −78 °C. In the reaction depicted below, [4] the Gilman reagent is a methylating reagent reacting with an alkyne in a conjugate addition, and the ester group forms a cyclic enone. Scheme 1. Example Gilman reagent reaction