Search results
Results from the WOW.Com Content Network
e. In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if it has a component in the ...
In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual ...
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body (ies).
The first term in D'Alembert's principle above is the virtual work done by the non-constraint forces N k along the virtual displacements δr k, and can without loss of generality be converted into the generalized analogues by the definition of generalized forces = =, so that = = = = = =.
A portion of the vector field (sin y, sin x) In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space . [1] A vector field on a plane can be visualized as a collection of arrows with given magnitudes and directions, each attached to a point on the plane.
Work done by force fields can be done indefinitely slowly, so as to approach the fictive reversible quasi-static ideal, in which entropy is not created in the system by the process. In thermodynamics, non-mechanical work is to be contrasted with mechanical work that is done by forces in immediate contact between the system and its surroundings.
Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U: Wherever the force is zero, its potential energy is defined to be zero as well. Whenever the force does work, potential energy is lost.
Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws, where force is inversely proportional to the square of the distance between the bodies. Coulomb's law has charge in place of mass and a ...