enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    Even higher derivatives are sometimes also used: the third derivative of position with respect to time is known as the jerk. See motion graphs and derivatives. A large number of fundamental equations in physics involve first or second time derivatives of quantities. Many other fundamental quantities in science are time derivatives of one another:

  4. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency

  5. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    In particular, the time derivatives of an object's position are significant in Newtonian physics: velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time ...

  7. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances. Derivatives can be generalized ...

  8. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The temperature approaches a linear function because that is the stable solution of the equation: wherever temperature has a nonzero second spatial derivative, the time derivative is nonzero as well. The heat equation implies that peaks ( local maxima ) of u {\displaystyle u} will be gradually eroded down, while depressions ( local minima ...

  9. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    In the International System of Units (SI), the unit of time is the second (symbol: s). It has been defined since 1967 as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom", and is an SI base unit. [12]