enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  3. Digital differential analyzer (graphics algorithm) - Wikipedia

    en.wikipedia.org/wiki/Digital_differential...

    Similar calculations are carried out to determine pixel positions along a line with negative slope. Thus, if the absolute value of the slope is less than 1, we set dx=1 if x s t a r t < x e n d {\displaystyle x_{\rm {start}}<x_{\rm {end}}} i.e. the starting extreme point is at the left.

  4. Bartels–Stewart algorithm - Wikipedia

    en.wikipedia.org/wiki/Bartels–Stewart_algorithm

    In numerical linear algebra, the Bartels–Stewart algorithm is used to numerically solve the Sylvester matrix equation =.Developed by R.H. Bartels and G.W. Stewart in 1971, [1] it was the first numerically stable method that could be systematically applied to solve such equations.

  5. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    An circulant matrix takes the form = [] or the transpose of this form (by choice of notation). If each is a square matrix, then the matrix is called a block-circulant matrix.. A circulant matrix is fully specified by one vector, , which appears as the first column (or row) of .

  6. Alternating-direction implicit method - Wikipedia

    en.wikipedia.org/wiki/Alternating-direction...

    In numerical linear algebra, the alternating-direction implicit (ADI) method is an iterative method used to solve Sylvester matrix equations.It is a popular method for solving the large matrix equations that arise in systems theory and control, [1] and can be formulated to construct solutions in a memory-efficient, factored form.

  7. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    where Y is a matrix with series of multivariate measurements (each column being a set of measurements on one of the dependent variables), X is a matrix of observations on independent variables that might be a design matrix (each column being a set of observations on one of the independent variables), B is a matrix containing parameters that are ...

  8. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    Cauchy's integral formula from complex analysis can also be used to generalize scalar functions to matrix functions. Cauchy's integral formula states that for any analytic function f defined on a set D ⊂ C, one has = , where C is a closed simple curve inside the domain D enclosing x.

  9. De Boor's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Boor's_algorithm

    In the mathematical subfield of numerical analysis, de Boor's algorithm [1] is a polynomial-time and numerically stable algorithm for evaluating spline curves in B-spline form. It is a generalization of de Casteljau's algorithm for Bézier curves.