enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Born–Haber cycle - Wikipedia

    en.wikipedia.org/wiki/BornHaber_cycle

    The Born–Haber cycle is an approach to analyze reaction energies. It was named after two German scientists, Max Born and Fritz Haber , who developed it in 1919. [ 1 ] [ 2 ] [ 3 ] It was also independently formulated by Kazimierz Fajans [ 4 ] and published concurrently in the same journal. [ 1 ]

  3. Lattice energy - Wikipedia

    en.wikipedia.org/wiki/Lattice_energy

    In these cases the polarization energy E pol associated with ions on polar lattice sites may be included in the Born–Haber cycle. As an example, one may consider the case of iron-pyrite FeS 2 . It has been shown that neglect of polarization led to a 15% difference between theory and experiment in the case of FeS 2 , whereas including it ...

  4. Hypothetical chemical compound - Wikipedia

    en.wikipedia.org/wiki/Hypothetical_chemical_compound

    Stability and other properties can be predicted using energy calculations and computational chemistry. "[Using] the Born–Haber cycle to estimate ... the heat of formation... can be used to determine whether a hypothetical compound is stable."

  5. Standard enthalpy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_formation

    Standard enthalpy change of formation in Born–Haber diagram for lithium fluoride. Δ latt H corresponds to U L in the text. The downward arrow "electron affinity" shows the negative quantity –EA F, since EA F is usually defined as positive.

  6. Max Born - Wikipedia

    en.wikipedia.org/wiki/Max_Born

    A chance meeting with Fritz Haber that month led to discussion of the manner in which an ionic compound is formed when a metal reacts with a halogen, which is today known as the Born–Haber cycle. [25] Even before Born had taken up the chair in Berlin, von Laue had changed his mind, and decided that he wanted it after all. [23]

  7. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

  8. Kapustinskii equation - Wikipedia

    en.wikipedia.org/wiki/Kapustinskii_equation

    The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.

  9. Dynamical Theory of Crystal Lattices - Wikipedia

    en.wikipedia.org/wiki/Dynamical_Theory_of...

    The book was originally started by Born in c. 1940, and was finished in the 1950s by Huang in consultation with Born. The text is considered a classical treatise on the subject of lattice dynamics, phonon theory, and elasticity in crystalline solids, but excluding metals and other complex solids with order/disorder phenomena.