Search results
Results from the WOW.Com Content Network
In an optical fiber, the material dispersion coefficient, M(λ), characterizes the amount of pulse broadening by material dispersion per unit length of fiber and per unit of spectral width. It is usually expressed in picoseconds per ( nanometre · kilometre ).
In a dispersive prism, material dispersion (a wavelength-dependent refractive index) causes different colors to refract at different angles, splitting white light into a spectrum. A compact fluorescent lamp seen through an Amici prism. Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1]
A. R. Forouhi and I. Bloomer deduced dispersion equations for the refractive index, n, and extinction coefficient, k, which were published in 1986 [1] and 1988. [2] The 1986 publication relates to amorphous materials, while the 1988 publication relates to crystalline.
In optics and lens design, the Abbe number, also known as the Vd-number or constringence of a transparent material, is an approximate measure of the material's dispersion (change of refractive index versus wavelength), with high values of Vd indicating low dispersion.
The calculation of glass properties allows "fine-tuning" of desired material characteristics, e.g., the refractive index. [1]The calculation of glass properties (glass modeling) is used to predict glass properties of interest or glass behavior under certain conditions (e.g., during production) without experimental investigation, based on past data and experience, with the intention to save ...
In optics, group-velocity dispersion (GVD) is a characteristic of a dispersive medium, used most often to determine how the medium affects the duration of an optical pulse traveling through it. Formally, GVD is defined as the derivative of the inverse of group velocity of light in a material with respect to angular frequency , [ 1 ] [ 2 ]
These coefficients are usually quoted for λ in micrometres. Note that this λ is the vacuum wavelength, not that in the material itself, which is λ/n. A different form of the equation is sometimes used for certain types of materials, e.g. crystals. Each term of the sum representing an absorption resonance of strength B i at a wavelength √ C i.
where ϕ(r, t) is the density of the diffusing material at location r and time t and D(ϕ, r) is the collective diffusion coefficient for density ϕ at location r; and ∇ represents the vector differential operator del. If the diffusion coefficient depends on the density then the equation is nonlinear, otherwise it is linear.