enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...

  3. Special relativity - Wikipedia

    en.wikipedia.org/wiki/Special_relativity

    Rather than an invariant time interval between two events, there is an invariant spacetime interval. Combined with other laws of physics, the two postulates of special relativity predict the equivalence of mass and energy , as expressed in the mass–energy equivalence formula ⁠ E = m c 2 {\displaystyle E=mc^{2}} ⁠ , where c {\displaystyle ...

  4. Teleparallelism - Wikipedia

    en.wikipedia.org/wiki/Teleparallelism

    Underlying spacetime is the Weitzenböck spacetime, which has a quadruplet of parallel vector fields as the fundamental structure. These parallel vector fields give rise to the metric tensor as a by-product. All physical laws are expressed by equations that are covariant or form invariant under the group of general coordinate transformations.

  5. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    The principle of local Lorentz covariance, which states that the laws of special relativity hold locally about each point of spacetime, lends further support to the choice of a manifold structure for representing spacetime, as locally around a point on a general manifold, the region 'looks like', or approximates very closely Minkowski space ...

  6. General covariance - Wikipedia

    en.wikipedia.org/wiki/General_covariance

    Much of the work on classical unified field theories consisted of attempts to further extend the general theory of relativity to interpret additional physical phenomena, particularly electromagnetism, within the framework of general covariance, and more specifically as purely geometric objects in the spacetime continuum.

  7. Relativity of simultaneity - Wikipedia

    en.wikipedia.org/wiki/Relativity_of_simultaneity

    In the spacetime diagram, the dashed line represents a set of points considered to be simultaneous with the origin by an observer moving with a velocity v of one-quarter of the speed of light. The dotted horizontal line represents the set of points regarded as simultaneous with the origin by a stationary observer.

  8. De Sitter invariant special relativity - Wikipedia

    en.wikipedia.org/wiki/De_Sitter_invariant...

    De Sitter suggested that spacetime curvature might not be due solely to gravity [2] but he did not give any mathematical details of how this could be accomplished. In 1968 Henri Bacry and Jean-Marc Lévy-Leblond showed that the de Sitter group was the most general group compatible with isotropy, homogeneity and boost invariance. [3]

  9. Spacetime topology - Wikipedia

    en.wikipedia.org/wiki/Spacetime_topology

    Spacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold (a spacetime) and the concepts of topology thus become important in analysing local as well as global aspects of spacetime.