Search results
Results from the WOW.Com Content Network
For example, in elementary arithmetic, one has (+) = + (). Therefore, one would say that multiplication distributes over addition . This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers , polynomials , matrices , rings , and fields .
In mathematics, the associative property [1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.
Full employment theorem (theoretical computer science) Fulton–Hansen connectedness theorem (algebraic geometry) Fundamental theorem of algebra (complex analysis) Fundamental theorem of arbitrage-free pricing (financial mathematics) Fundamental theorem of arithmetic (number theory) Fundamental theorem of calculus
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.
Mathematical induction is an inference rule used in formal proofs, and is the foundation of most correctness proofs for computer programs. [ 3 ] Despite its name, mathematical induction differs fundamentally from inductive reasoning as used in philosophy , in which the examination of many cases results in a probable conclusion.
In logic and mathematics, a formal proof or derivation is a finite sequence of sentences (known as well-formed formulas when relating to formal language), each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence, according to the rule of inference.
In combinatorics, the rule of division is a counting principle. It states that there are n/d ways to do a task if it can be done using a procedure that can be carried out in n ways, and for each way w, exactly d of the n ways correspond to the way w. In a nutshell, the division rule is a common way to ignore "unimportant" differences when ...
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and ()