enow.com Web Search

  1. Ad

    related to: sample skewness equation in excel function

Search results

  1. Results from the WOW.Com Content Network
  2. Skewness - Wikipedia

    en.wikipedia.org/wiki/Skewness

    In the older notion of nonparametric skew, defined as () /, where is the mean, is the median, and is the standard deviation, the skewness is defined in terms of this relationship: positive/right nonparametric skew means the mean is greater than (to the right of) the median, while negative/left nonparametric skew means the mean is less than (to ...

  3. D'Agostino's K-squared test - Wikipedia

    en.wikipedia.org/wiki/D'Agostino's_K-squared_test

    In the following, { x i } denotes a sample of n observations, g 1 and g 2 are the sample skewness and kurtosis, m j ’s are the j-th sample central moments, and ¯ is the sample mean. Frequently in the literature related to normality testing, the skewness and kurtosis are denoted as √ β 1 and β 2 respectively.

  4. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    Grouping these by order statistic counts the number of ways an element of an n element sample can be the j th element of an r element subset, and yields formulas of the form below. Direct estimators for the first four L-moments in a finite sample of n observations are: [ 6 ]

  5. Multimodal distribution - Wikipedia

    en.wikipedia.org/wiki/Multimodal_distribution

    The formula for a finite sample is [27] = + + () where n is the number of items in the sample, g is the sample skewness and k is the sample excess kurtosis. The value of b for the uniform distribution is 5/9. This is also its value for the exponential distribution.

  6. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  7. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    Examples are the simple gravitation law connecting masses and distance with the resulting force, or the formula for equilibrium concentrations of chemicals in a solution that connects concentrations of educts and products. Assuming log-normal distributions of the variables involved leads to consistent models in these cases.

  8. Jarque–Bera test - Wikipedia

    en.wikipedia.org/wiki/Jarque–Bera_test

    In statistics, the Jarque–Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution. The test is named after Carlos Jarque and Anil K. Bera. The test statistic is always nonnegative. If it is far from zero, it signals the data do not have a normal distribution.

  9. Noncentral t-distribution - Wikipedia

    en.wikipedia.org/wiki/Noncentral_t-distribution

    However, the usual skewness is not generally a good measure of asymmetry for this distribution, because if the degrees of freedom is not larger than 3, the third moment does not exist at all. Even if the degrees of freedom is greater than 3, the sample estimate of the skewness is still very unstable unless the sample size is very large.

  1. Ad

    related to: sample skewness equation in excel function