Search results
Results from the WOW.Com Content Network
Limit load is the maximum load that a structure can safely carry. It's the load at which the structure is in a state of incipient plastic collapse. As the load on the structure increases, the displacements increases linearly in the elastic range until the load attains the yield value.
The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally. The critical load puts the column in a state of unstable equilibrium. A load beyond the critical load causes the column to fail by buckling. As the load is increased beyond the ...
Limit load can refer to: Limit load (aeronautics) , the maximum load factor during flight Limit load (physics) , maximum load that a structure can safely carry
The strongest possible size effect occurs for specimens with similar deep notches (Fig. 4b), or for structures in which a large crack, similar for different sizes, forms stably before the maximum load is reached. Because the location of fracture initiation is predetermined to occur at the crack tip and thus cannot sample the random strengths of ...
These load factors are, roughly, a ratio of the theoretical design strength to the maximum load expected in service. They are developed to help achieve the desired level of reliability of a structure [ 6 ] based on probabilistic studies that take into account the load's originating cause, recurrence, distribution, and static or dynamic nature.
In engineering, the ultimate load [1] is a statistical figure used in calculations, and should (hopefully) never actually occur.. Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by prescribed factors of safety).
The rope is on the verge of full sliding, i.e. is the maximum load that one can hold. Smaller loads can be held as well, resulting in a smaller effective contact angle φ {\displaystyle \varphi } . It is important that the line is not rigid, in which case significant force would be lost in the bending of the line tightly around the cylinder.
The red curve shows the power in the load, normalized relative to its maximum possible. The dark blue curve shows the efficiency η. The efficiency η is the ratio of the power dissipated by the load resistance R L to the total power dissipated by the circuit (which includes the voltage source's resistance of R S as well as R L):