enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    When = is the set of natural numbers, Lebesgue integrability, unordered summability and absolute convergence all coincide. Finally, all of the above holds for integrals with values in a Banach space. The definition of a Banach-valued Riemann integral is an evident modification of the usual one.

  3. Conditional convergence - Wikipedia

    en.wikipedia.org/wiki/Conditional_convergence

    Agnew's theorem describes rearrangements that preserve convergence for all convergent series. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R n can converge. A typical conditionally convergent integral is that on the non-negative real axis of ⁡ (see Fresnel integral).

  4. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r < 1, then the series converges absolutely. If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  5. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  6. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    In a normed vector space, one can define absolute convergence as convergence of the series (| |). Absolute convergence implies Cauchy convergence of the sequence of partial sums (by the triangle inequality), which in turn implies absolute convergence of some grouping (not reordering). The sequence of partial sums obtained by grouping is a ...

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound for a series or for the absolute values of its terms is an effective way to prove convergence or absolute convergence of a series. [48] [49] [47] [50]

  8. Weierstrass M-test - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_M-test

    In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely.It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers.

  9. Dirichlet's test - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_test

    In mathematics, Dirichlet's test is a method of testing for the convergence of a series that is especially useful for proving conditional convergence. It is named after its author Peter Gustav Lejeune Dirichlet , and was published posthumously in the Journal de Mathématiques Pures et Appliquées in 1862.