Search results
Results from the WOW.Com Content Network
Agnew's theorem describes rearrangements that preserve convergence for all convergent series. The Lévy–Steinitz theorem identifies the set of values to which a series of terms in R n can converge. A typical conditionally convergent integral is that on the non-negative real axis of (see Fresnel integral).
The proof is the same as for complex-valued series: use the completeness to derive the Cauchy criterion for convergence—a series is convergent if and only if its tails can be made arbitrarily small in norm—and apply the triangle inequality. In particular, for series with values in any Banach space, absolute convergence implies convergence ...
In mathematics, convergence tests are methods of testing for the convergence, conditional convergence, absolute convergence, interval of convergence or divergence of an infinite series =. List of tests
In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.
In mathematical analysis, the alternating series test is the method used to show that an alternating series is convergent when its terms (1) decrease in absolute value, and (2) approach zero in the limit.
In capital-sigma notation this is expressed = or = + with a n > 0 for all n. Like any series, an alternating series is a convergent series if and only if the sequence of partial sums of the series converges to a limit .
Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound for a series or for the absolute values of its terms is an effective way to prove convergence or absolute convergence of a series. [48] [49] [47] [50]
In the two-sided case, it is sometimes called the strip of absolute convergence. The Laplace transform is analytic in the region of absolute convergence. Similarly, the set of values for which F(s) converges (conditionally or absolutely) is known as the region of conditional convergence, or simply the region of convergence (ROC).