Search results
Results from the WOW.Com Content Network
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
Galileo applied for Spain's lucrative prize for solutions to the longitude problem in 1616. He worked on this problem from time to time, but was unable to convince the Spanish court. He later applied to Holland for their prize, but by then he had been tried for heresy by the Roman Inquisition and sentenced to house arrest for the rest of his life.
The Two Generals' Problem appears often as an introduction to the more general Byzantine Generals problem in introductory classes about computer networking (particularly with regard to the Transmission Control Protocol, where it shows that TCP cannot guarantee state consistency between endpoints and why this is the case), though it applies to ...
J. M. Tienstra [] (1895-1951) was a professor of the Delft university of Technology where he taught the use of barycentric coordinates in solving the resection problem. It seems most probable that his name became attached to the procedure for this reason, though when, and by whom, the formula was first proposed is unknown.
Mass point geometry, colloquially known as mass points, is a problem-solving technique in geometry which applies the physical principle of the center of mass to geometry problems involving triangles and intersecting cevians. [1]
the inverse geodesic problem or second geodesic problem, given A and B, determine s 12, α 1, and α 2. As can be seen from Fig. 1, these problems involve solving the triangle NAB given one angle, α 1 for the direct problem and λ 12 = λ 2 − λ 1 for the inverse problem, and its two adjacent sides.
Another related problem is the bottleneck travelling salesman problem: Find a Hamiltonian cycle in a weighted graph with the minimal weight of the weightiest edge. A real-world example is avoiding narrow streets with big buses. [15] The problem is of considerable practical importance, apart from evident transportation and logistics areas.
Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.