Search results
Results from the WOW.Com Content Network
In organic chemistry, an acetyl group is a functional group denoted by the chemical formula −COCH 3 and the structure −C(=O)−CH 3. It is sometimes represented by the symbol Ac [5] [6] (not to be confused with the element actinium). In IUPAC nomenclature, an acetyl group is called an ethanoyl group.
In organic chemistry, an acetal is a functional group with the connectivity R 2 C(OR') 2. Here, the R groups can be organic fragments (a carbon atom, with arbitrary other atoms attached to that) or hydrogen, while the R' groups must be organic fragments not hydrogen. The two R' groups can be equivalent to each other (a "symmetric acetal") or ...
Functional group interconversion can be used in retrosynthetic analysis to plan organic synthesis. A functional group is a group of atoms in a molecule with distinctive chemical properties, regardless of the other atoms in the molecule. The atoms in a functional group are linked to each other and to the rest of the molecule by covalent bonds.
The structure of the acetoxy group blue. In organic chemistry, the acetoxy group (abbr. AcO or OAc; IUPAC name: acetyloxy [1]), is a functional group with the formula −OCOCH 3 and the structure −O−C(=O)−CH 3. As the -oxy suffix implies, it differs from the acetyl group (−C(=O)−CH 3) by the presence of an additional oxygen atom.
Acetyl chloride was first prepared in 1852 by French chemist Charles Gerhardt by treating potassium acetate with phosphoryl chloride. [4]Acetyl chloride is produced in the laboratory by the reaction of acetic acid with chlorodehydrating agents such as phosphorus trichloride (PCl 3), phosphorus pentachloride (PCl 5), sulfuryl chloride (SO 2 Cl 2), phosgene, or thionyl chloride (SOCl 2).
The numbers 200-900 would be confused easily with 22 to 29 if they were used in chemistry. khīlioi = 1000, diskhīlioi = 2000, triskhīlioi = 3000, etc. 13 to 19 are formed by starting with the Greek word for the number of ones, followed by και (the Greek word for 'and'), followed by δέκα (the Greek word for 'ten').
The 1,2‑diols present for protecting-group chemistry a special class of alcohols. One can exploit the adjacency of two hydroxy groups, e.g. in sugars, in that one protects both hydroxy groups codependently as an acetal. Common in this situation are the benzylidene, isopropylidene and cyclohexylidene or cyclopentylidene acetals.
Acid catalyzed acetal formation from the corresponding hemiacetal. Acetals, as already pointed out, are stable tetrahedral intermediates so they can be used as protective groups in organic synthesis. Acetals are stable under basic conditions, so they can be used to protect ketones from a base. The acetal group is hydrolyzed under acidic conditions.