Search results
Results from the WOW.Com Content Network
In physics, specifically electromagnetism, the Biot–Savart law (/ ˈ b iː oʊ s ə ˈ v ɑːr / or / ˈ b j oʊ s ə ˈ v ɑːr /) [1] is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.
Jean-Baptiste Biot (/ ˈ b iː oʊ, ˈ b j oʊ /; [2] French:; 21 April 1774 – 3 February 1862) was a French physicist, astronomer, and mathematician who co-discovered the Biot–Savart law of magnetostatics with Félix Savart, established the reality of meteorites, made an early balloon flight, and studied the polarization of light.
Jefimenko says, "...neither Maxwell's equations nor their solutions indicate an existence of causal links between electric and magnetic fields. Therefore, we must conclude that an electromagnetic field is a dual entity always having an electric and a magnetic component simultaneously created by their common sources: time-variable electric ...
Magnetostatics is the study of magnetic fields in systems where the currents are steady (not changing with time). It is the magnetic analogue of electrostatics, where the charges are stationary.
Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]
Importantly, Gauss's force law is a significant generalization of Ampere's force law, since moving point charges do not represent direct currents. In fact, today Ampere's force law is no longer presented in its original form, as there are equivalent representations for direct currents such as the Biot-Savart law in combination with the Lorentz ...
Laplace's law or The law of Laplace may refer to several concepts, Biot–Savart law, in electromagnetics, it describes the magnetic field set up by a steady current density. Young–Laplace equation, describing pressure difference over an interface in fluid mechanics. Rule of succession, a smoothing technique accounting for unseen data.
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.