Search results
Results from the WOW.Com Content Network
The Biot–Savart law [4]: Sec 5-2-1 is used for computing the resultant magnetic flux density B at position r in 3D-space generated by a filamentary current I (for example due to a wire). A steady (or stationary) current is a continual flow of charges which does not change with time and the charge neither accumulates nor depletes at any point.
In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.
Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]
Magnetostatics is the study of magnetic fields in systems where the currents are steady (not changing with time). It is the magnetic analogue of electrostatics, where the charges are stationary.
Faraday's law of induction was suggestive to Einstein when he wrote in 1905 about the "reciprocal electrodynamic action of a magnet and a conductor". [ 15 ] Nevertheless, the aspiration, reflected in references for this article, is for an analytic geometry of spacetime and charges providing a deductive route to forces and currents in practice.
Jean-Baptiste Biot (/ ˈ b iː oʊ, ˈ b j oʊ /; [2] French:; 21 April 1774 – 3 February 1862) was a French physicist, astronomer, and mathematician who co-discovered the Biot–Savart law of magnetostatics with Félix Savart, established the reality of meteorites, made an early balloon flight, and studied the polarization of light.
Savart became a professor at Collège de France in 1820 and was the co-originator of the Biot–Savart law, along with Jean-Baptiste Biot. Together, they worked on the theory of magnetism and electrical currents. Their law was developed and published in 1820. [4] The Biot–Savart law relates magnetic fields to the currents which are their sources.
Laplace's law or The law of Laplace may refer to several concepts, Biot–Savart law, in electromagnetics, it describes the magnetic field set up by a steady current density. Young–Laplace equation, describing pressure difference over an interface in fluid mechanics. Rule of succession, a smoothing technique accounting for unseen data.