enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    IDDFS achieves breadth-first search's completeness (when the branching factor is finite) using depth-first search's space-efficiency. If a solution exists, it will find a solution path with the fewest arcs. [2] Iterative deepening visits states multiple times, and it may seem wasteful.

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.

  4. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    In depth-first search (DFS), the search tree is deepened as much as possible before going to the next sibling. To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node.

  5. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  6. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    Iterative-deepening-A* works as follows: at each iteration, perform a depth-first search, cutting off a branch when its total cost () = + exceeds a given threshold.This threshold starts at the estimate of the cost at the initial state, and increases for each iteration of the algorithm.

  7. MTD(f) - Wikipedia

    en.wikipedia.org/wiki/MTD(f)

    The better the quicker the algorithm converges. Could be 0 for first call. d Depth to loop for. An iterative deepening depth-first search could be done by calling MTDF() multiple times with incrementing d and providing the best previous result in f. [5] AlphaBetaWithMemory is a variation of Alpha Beta Search that caches previous results.

  8. Fringe search - Wikipedia

    en.wikipedia.org/wiki/Fringe_search

    Consider IDA*, which does a recursive left-to-right depth-first search from the root node, stopping the recursion once the goal has been found or the nodes have reached a maximum value ƒ. If no goal is found in the first threshold ƒ, the threshold is then increased and the algorithm searches again. I.E.

  9. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Depth-first search: traverses a graph branch by branch; Dijkstra's algorithm: a special case of A* for which no heuristic function is used; General Problem Solver: a seminal theorem-proving algorithm intended to work as a universal problem solver machine. Iterative deepening depth-first search (IDDFS): a state space search strategy