Search results
Results from the WOW.Com Content Network
Alanine is a non-competitive inhibitor, therefore it binds away from the active site to the substrate in order for it to still be the final product. [6] Another example of non-competitive inhibition is given by glucose-6-phosphate inhibiting hexokinase in the brain. Carbons 2 and 4 on glucose-6-phosphate contain hydroxyl groups that attach ...
Uncompetitive inhibition (which Laidler and Bunting preferred to call anti-competitive inhibition, [1] but this term has not been widely adopted) is a type of inhibition in which the apparent values of the Michaelis–Menten parameters and are decreased in the same proportion.
For example, an inhibitor might compete with substrate A for the first binding site, but be a non-competitive inhibitor with respect to substrate B in the second binding site. [26] Traditionally reversible enzyme inhibitors have been classified as competitive, uncompetitive, or non-competitive, according to their effects on K m and V max. [14]
Enzyme inhibition can refer to the inhibition of the expression of the enzyme by another molecule; interference at the enzyme-level, basically with how the enzyme works. This can be competitive inhibition, uncompetitive inhibition, non-competitive inhibition or partially competitive inhibition.
Two equations listed below that are referred to as non-competitive substrate inhibition and competitive substrate inhibition models respectively by Shuler and Michael in Bioprocess Engineering: Basic Concepts. Note that the Haldane equation above is a special case of the following non-competitive substrate inhibition model, where KI >>Ks. [1]
If the ability of the inhibitor to bind the enzyme is exactly the same whether or not the enzyme has already bound the substrate, it is known as a non-competitive inhibitor. [1] [2] Non-competitive inhibition is sometimes thought of as a special case of mixed inhibition. In mixed inhibition, the inhibitor binds to an allosteric site, i.e. a ...
With pure noncompetitive inhibition the apparent value of is decreased. This can be seen on the Lineweaver–Burk plot as an increased ordinate intercept with no effect on the abscissa intercept − 1 / K m {\displaystyle -1/K_{\mathrm {m} }} , as pure noncompetitive inhibition does not effect substrate affinity.
The cell is able to react to this kind of situation in a mechanical way and solve the problem of the amount of a product. An example of feedback inhibition in human cells is the protein aconitase (an enzyme that catalyses the isomeration of citrate to isocitrate). When the cell needs iron, this enzyme loses the iron molecule and its form changes.