Search results
Results from the WOW.Com Content Network
1943 Reactor diagram using boron control rods. Control rods are inserted into the core of a nuclear reactor and adjusted in order to control the rate of the nuclear chain reaction and, thereby, the thermal power output of the reactor, the rate of steam production, and the electrical power output of the power station.
A reactor vessel head for a pressurized water reactor. This structure is attached to the top of the reactor vessel body. It contains penetrations to allow the control rod driving mechanism to attach to the control rods in the fuel assembly. The coolant level measurement probe also enters the vessel through the reactor vessel head.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Unit 2 was shut down in early January 2012 for routine refueling and replacement of the reactor vessel head. [48] On January 31, 2012, Unit 3 suffered a radioactive leak largely inside the containment shell, with a release to the environment below allowable limits, and the reactor was shut down per standard procedure.
- A pressurised heavy water reactor is a nuclear power reactor that uses unenriched natural uranium as nuclear fuel and heavy water as moderator and as primary coolant. The heavy water is kept under pressure in order to raise its boiling point, allowing it to be heated to higher temperatures and thereby carry more heat out of the reactor core.
A reactor protection system is designed to immediately terminate the nuclear reaction. By breaking the nuclear chain reaction, the source of heat is eliminated.Other systems can then be used to remove decay heat from the core.
A BWR's containment consists of a drywell, where the reactor and associated cooling equipment is located, and a wetwell. The drywell is much smaller than a PWR containment and plays a larger role. During the theoretical leakage design basis accident, the reactor coolant flashes to steam in the drywell, pressurizing it rapidly.
The reactor head under inspection. Unit One is an 879 MWe pressurized water reactor supplied by Babcock & Wilcox. The reactor was shut down from 2002 until early 2004 for safety repairs and upgrades. In 2012 the reactor supplied 7101.700 GWh of electricity. [14] In 1973, two more reactors were also ordered from Babcock & Wilcox.