enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}

  3. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...

  4. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, one period earlier denoted as t − 1, one period later as t + 1, etc. The solution of such an equation is a function of t, and not of any iterate values, giving the value of the iterate at any time.

  5. Constant-recursive sequence - Wikipedia

    en.wikipedia.org/wiki/Constant-recursive_sequence

    The order of the sequence is the smallest positive integer such that the sequence satisfies a recurrence of order d, or = for the everywhere-zero sequence. [ citation needed ] The definition above allows eventually- periodic sequences such as 1 , 0 , 0 , 0 , … {\displaystyle 1,0,0,0,\ldots } and 0 , 1 , 0 , 0 , … {\displaystyle 0,1,0,0 ...

  6. Padovan sequence - Wikipedia

    en.wikipedia.org/wiki/Padovan_sequence

    In the spiral, each triangle shares a side with two others giving a visual proof that the Padovan sequence also satisfies the recurrence relation = + ()Starting from this, the defining recurrence and other recurrences as they are discovered, one can create an infinite number of further recurrences by repeatedly replacing () by () + ()

  7. Random walk - Wikipedia

    en.wikipedia.org/wiki/Random_walk

    Five eight-step random walks from a central point. Some paths appear shorter than eight steps where the route has doubled back on itself. (animated version)In mathematics, a random walk, sometimes known as a drunkard's walk, is a stochastic process that describes a path that consists of a succession of random steps on some mathematical space.

  8. Stirling numbers of the second kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    In one case, A is empty, and in another B is empty, so 2 n − 2 ordered pairs of subsets remain. Finally, since we want unordered pairs rather than ordered pairs we divide this last number by 2, giving the result above. Another explicit expansion of the recurrence-relation gives identities in the spirit of the above example.

  9. Poincaré recurrence theorem - Wikipedia

    en.wikipedia.org/wiki/Poincaré_recurrence_theorem

    The recurrence time depends on the required degree of closeness (the size of the phase volume). To achieve greater accuracy of recurrence, we need to take smaller initial volume, which means longer recurrence time. For a given phase in a volume, the recurrence is not necessarily a periodic recurrence.