enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    The Frobenius norm is an extension of the Euclidean norm to and comes from the Frobenius inner product on the space of all matrices. The Frobenius norm is sub-multiplicative and is very useful for numerical linear algebra. The sub-multiplicativity of Frobenius norm can be proved using Cauchy–Schwarz inequality.

  3. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    One example is the squared Frobenius norm, which can be viewed as an -norm acting either entrywise, or on the singular values of the matrix: = ‖ ‖ = | | = ⁡ =. In the multivariate case the effect of regularizing with the Frobenius norm is the same as the vector case; very complex models will have larger norms, and, thus, will be penalized ...

  4. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Let = be an positive matrix: > for ,.Then the following statements hold. There is a positive real number r, called the Perron root or the Perron–Frobenius eigenvalue (also called the leading eigenvalue, principal eigenvalue or dominant eigenvalue), such that r is an eigenvalue of A and any other eigenvalue λ (possibly complex) in absolute value is strictly smaller than r, |λ| < r.

  5. Schatten norm - Wikipedia

    en.wikipedia.org/wiki/Schatten_norm

    The Schatten 1-norm is the nuclear norm (also known as the trace norm, or the Ky Fan n-norm [1]). The Schatten 2-norm is the Frobenius norm. The Schatten ∞-norm is the spectral norm (also known as the operator norm, or the largest singular value).

  6. Orthogonal Procrustes problem - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

    where ‖ ‖ denotes the Frobenius norm. This is a special case of Wahba's problem (with identical weights; instead of considering two matrices, in Wahba's problem the columns of the matrices are considered as individual vectors). Another difference is that Wahba's problem tries to find a proper rotation matrix instead of just an orthogonal one.

  7. Schur decomposition - Wikipedia

    en.wikipedia.org/wiki/Schur_decomposition

    The nilpotent part N is generally not unique either, but its Frobenius norm is uniquely determined by A (just because the Frobenius norm of A is equal to the Frobenius norm of U = D + N). [6] It is clear that if A is a normal matrix, then U from its Schur decomposition must be a diagonal matrix and the column vectors of Q are the eigenvectors of A.

  8. Golden–Thompson inequality - Wikipedia

    en.wikipedia.org/wiki/Golden–Thompson_inequality

    The standard Golden–Thompson inequality is a special case of the above inequality, where the norm is the Frobenius norm. The general case is provable in the same way, since unitarily invariant norms also satisfy the Cauchy-Schwarz inequality. (Bhatia 1997, Exercise IV.2.7)

  9. Total least squares - Wikipedia

    en.wikipedia.org/wiki/Total_least_squares

    where [] is the augmented matrix with E and F side by side and ‖ ‖ is the Frobenius norm, the square root of the sum of the squares of all entries in a matrix and so equivalently the square root of the sum of squares of the lengths of the rows or columns of the matrix. This can be rewritten as