Search results
Results from the WOW.Com Content Network
The High Flux Isotope Reactor (HFIR) is a nuclear research reactor at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, United States.Operating at 85 MW, HFIR is one of the highest flux reactor-based sources of neutrons for condensed matter physics research in the United States, and it has one of the highest steady-state neutron fluxes of any research reactor in the world.
The protons pass into a ring-shaped structure, a proton accumulator ring, where they spin around at very high speeds and accumulate in "bunches." Each bunch of protons is released from the ring as a pulse, at a rate of 60 times per second (60 hertz). The high-energy proton pulses strike a target of liquid mercury, where spallation occurs.
It operated from 1966 until 1969 (with six months down time to move from U-235 to U-233 fuel) and proved the viability of molten salt reactors, while also producing fuel for other reactors as a byproduct of its own reaction. [22] The High Flux Isotope Reactor built in 1965 had the highest neutron flux of any reactor at the time. [22]
The title of her talk at noon to Friends of ORNL at the UT Resource Center, 1201 Oak Ridge Turnpike, is “Actinide Separations Tailored for Californium-252, Plutonium-238 and Promethium-147 ...
The High Flux Isotope Reactor (HFIR) @ ORNL [41] 100/202 The Spallation Neutron Source (SNS) @ ORNL [42] 450/483 Fusion Energy Sciences (FES) [43] Fusion Facilities The DIII-D (tokamak) National Fusion Facility @ General Atomics [44] NA/429 National Spherical Torus Experiment (NSTX) @ PPPL [45] 300/358 High Energy Physics (HEP) [46]
A High Flux Reactor is a type of nuclear research reactor. High Flux Isotope Reactor (HFIR), in Oak Ridge, Tennessee, United States of America, High Flux Australian Reactor (HIFAR), Australia's first nuclear reactor, High-Flux Advanced Neutron Application Reactor (HANARO), in South Korea. The High Flux Reactor at Institut Laue–Langevin in France.
Plate-type fuel is commonly composed of enriched uranium sandwiched between metal cladding. Plate-type fuel is used in several research reactors where a high neutron flux is desired, for uses such as material irradiation studies or isotope production, without the high temperatures seen in ceramic, cylindrical fuel.
A radioisotope produced at the University of Missouri Research Reactor holds promise for future cancer treatments. Carolyn Anderson and Heather Hennkens are leading the research project into how ...