Search results
Results from the WOW.Com Content Network
An even more important reason to distinguish between polynomials and polynomial functions is that many operations on polynomials (like Euclidean division) require looking at what a polynomial is composed of as an expression rather than evaluating it at some constant value for x.
For example the above polynomial expression is equivalent (denote the same polynomial as + + Many author do not distinguish polynomials and polynomial expressions. In this case the expression of a polynomial expression as a linear combination is called the canonical form , normal form , or expanded form of the polynomial.
The distinction between a polynomial expression and the polynomial that it represents is relatively recent, and mainly motivated by the rise of computer algebra, where, for example, the test whether two polynomial expressions represent the same polynomial may be a nontrivial computation.
In mathematics, an algebraic equation or polynomial equation is an equation of the form =, where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, x 5 − 3 x + 1 = 0 {\displaystyle x^{5}-3x+1=0} is an algebraic equation with integer coefficients and
The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial x 4 − 1 {\displaystyle x^{4}-1} can be factored as follows:
In abstract algebra the concept of a polynomial is extended to include formal expressions in which the coefficients of the polynomial can be taken from any field. In this setting, given a field F and some indeterminate X , a rational expression (also known as a rational fraction or, in algebraic geometry , a rational function ) is any element ...
The roots of a polynomial expression of degree n, or equivalently the solutions of a polynomial equation, can always be written as algebraic expressions if n < 5 (see quadratic formula, cubic function, and quartic equation). Such a solution of an equation is called an algebraic solution.
A polynomial can be formally defined as the sequence of its coefficients, in this case [,,] , and the expression + or more explicitly + + is just a convenient alternative notation, with powers of the indeterminate used to indicate the order of the coefficients. Two such formal polynomials are considered equal ...