enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    A sufficient condition for existence and uniqueness of a solution to this problem is that M be symmetric positive-definite. If M is such that LCP(q, M) has a solution for every q, then M is a Q-matrix. If M is such that LCP(q, M) have a unique solution for every q, then M is a P-matrix. Both of these characterizations are sufficient and ...

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Others, such as matrix addition, scalar multiplication, matrix multiplication, and row operations involve operations on matrix entries and therefore require that matrix entries are numbers or belong to a field or a ring. [8] In this section, it is supposed that matrix entries belong to a fixed ring, which is typically a field of numbers.

  4. Orthogonal Procrustes problem - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_Procrustes_problem

    The orthogonal Procrustes problem [1] is a matrix approximation problem in linear algebra. In its classical form, one is given two matrices A {\displaystyle A} and B {\displaystyle B} and asked to find an orthogonal matrix Ω {\displaystyle \Omega } which most closely maps A {\displaystyle A} to B {\displaystyle B} .

  5. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Linear algebraic concepts such as matrix operations and eigenvalue problems are employed to enhance the efficiency, reliability, and economic performance of power systems. The application of linear algebra in this context is vital for the design and operation of modern power systems , including renewable energy sources and smart grids .

  6. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    The above equations are, in fact, the general functions sought, but they are in their general form (with unspecified values of A and B), whilst we want to actually find their exact forms and solutions. So now we consider the problem’s given initial conditions (the problem including given initial conditions is the so-called initial value problem).

  7. Numerical linear algebra - Wikipedia

    en.wikipedia.org/wiki/Numerical_linear_algebra

    For many problems in applied linear algebra, it is useful to adopt the perspective of a matrix as being a concatenation of column vectors. For example, when solving the linear system =, rather than understanding x as the product of with b, it is helpful to think of x as the vector of coefficients in the linear expansion of b in the basis formed by the columns of A.

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y, because the multiplication operator for matrix-to-matrix is not commutative. Moreover, If X is normal and non-singular, then X Y and Y X have the same set of eigenvalues. If X is normal and non-singular, Y is normal, and XY ...

  9. Toeplitz matrix - Wikipedia

    en.wikipedia.org/wiki/Toeplitz_matrix

    The set of Toeplitz matrices is a subspace of the vector space of matrices (under matrix addition and scalar multiplication). Two Toeplitz matrices may be added in O ( n ) {\displaystyle O(n)} time (by storing only one value of each diagonal) and multiplied in O ( n 2 ) {\displaystyle O(n^{2})} time.