Search results
Results from the WOW.Com Content Network
Derived quantities can be expressed in terms of the base quantities. Note that neither the names nor the symbols used for the physical quantities are international standards. Some quantities are known as several different names such as the magnetic B-field which is known as the magnetic flux density , the magnetic induction or simply as the ...
electric charge: coulomb (C) heat: joule (J) Reactive Power: volt-ampere reactive (var) electric charge: coulomb (C) electrical resistance: ohm (Ω) Ricci tensor: reciprocal square meter (m −2) radiancy: meter per second: gas constant: joule per mole per kelvin (J⋅mol −1 ⋅K −1) radius vector (position)
The Green Book is a direct successor of the Manual of Symbols and Terminology for Physicochemical Quantities and Units, originally prepared for publication on behalf of IUPAC's Physical Chemistry Division by M. L. McGlashen in 1969. A full history of the Green Book's various editions is provided in the historical introduction to the third edition.
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
This category identifies physical quantities which are necessary defined quantities, measured, manipulated, generally used by physicists, engineers, chemists, etc. Contents Top
In physics and chemistry, it is common to measure energy on the atomic scale in the non-SI, but convenient, units electronvolts (eV). 1 eV is equivalent to the kinetic energy acquired by an electron in passing through a potential difference of 1 volt in a vacuum. It is common to use the SI magnitude prefixes (e.g. milli-, mega- etc) with ...