enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Noether's theorem - Wikipedia

    en.wikipedia.org/wiki/Noether's_theorem

    This is the first of two theorems (see Noether's second theorem) published by the mathematician Emmy Noether in 1918. [1] The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action .

  3. Gauge symmetry (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Gauge_symmetry_(mathematics)

    In accordance with Noether's second theorem, there is one-to-one correspondence between the gauge symmetries of a Lagrangian and the Noether identities which the Euler–Lagrange operator satisfies. Consequently, gauge symmetries characterize the degeneracy of a Lagrangian system. [5]

  4. Axial current - Wikipedia

    en.wikipedia.org/wiki/Axial_current

    According to Noether's theorem, each symmetry of a system is associated a conserved quantity. [ 1 ] [ 2 ] For example, the rotational invariance of a system implies the conservation of its angular momentum , or spacetime invariance implies the conservation of energy–momentum.

  5. Noether identities - Wikipedia

    en.wikipedia.org/wiki/Noether_identities

    Noether identities need not be independent, but satisfy first-stage Noether identities, which are subject to the second-stage Noether identities and so on. Higher-stage Noether identities also are separated into the trivial and non-trivial once. A degenerate Lagrangian is called reducible if there exist non-trivial higher-stage Noether identities.

  6. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Envelope theorem (calculus of variations) Isoperimetric theorem (curves, calculus of variations) Minimax theorem (game theory) Mountain pass theorem (calculus of variations) Noether's second theorem (calculus of variations, physics) Parthasarathy's theorem (game theory) Sion's minimax theorem (game theory) Tonelli's theorem (functional analysis)

  7. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    In mathematical analysis, Schwarz's theorem (or Clairaut's theorem on equality of mixed partials) [9] named after Alexis Clairaut and Hermann Schwarz, states that for a function : defined on a set , if is a point such that some neighborhood of is contained in and has continuous second partial derivatives on that neighborhood of , then for all i ...

  8. Noether - Wikipedia

    en.wikipedia.org/wiki/Noether

    Noether's theorem (or Noether's first theorem) Noether's second theorem; Noether normalization lemma; Noetherian rings; Nöther crater, on the far side of the Moon, named after Emmy Noether; Fritz Noether (1884–1941), professor at the University of Tomsk; Gottfried E. Noether (1915–1991), son of Fritz Noether, statistician at the University ...

  9. Six Ideas that Shaped Physics - Wikipedia

    en.wikipedia.org/wiki/Six_Ideas_that_Shaped_Physics

    The books opens with 20th century physics, starting with the conservation laws implied by Noether's theorem. It then proceeds to present Newtonian mechanics and the laws of motion as a consequence of underlying physical symmetry , reversing the chronological order in which the study of physics developed as a scientific discipline.