Search results
Results from the WOW.Com Content Network
In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.
In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).
Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative. [ citation needed ] Logarithms can be used to remove exponents, convert products into sums, and convert division into subtraction—each of which may lead to a simplified ...
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g.More precisely, if = is the function such that () = (()) for every x, then the chain rule is, in Lagrange's notation, ′ = ′ (()) ′ (). or, equivalently, ′ = ′ = (′) ′.
In addition, as rational powers of −1 with even denominators (in lowest terms) are not real numbers, these expressions are only real valued for rational powers with odd denominators (in lowest terms). Finally, whenever the function is differentiable at =, the defining limit for the derivative is: which yields 0 only when is a rational number ...
For a function f of three or more variables, there is a generalization of the rule shown above. In this context, instead of examining the determinant of the Hessian matrix, one must look at the eigenvalues of the Hessian matrix at the critical point.
Substituting r(cos θ + i sin θ) for e ix and equating real and imaginary parts in this formula gives dr / dx = 0 and dθ / dx = 1. Thus, r is a constant, and θ is x + C for some constant C. The initial values r(0) = 1 and θ(0) = 0 come from e 0i = 1, giving r = 1 and θ = x.
Change of variables formula in terms of Lebesgue measure [ edit ] The following theorem allows us to relate integrals with respect to Lebesgue measure to an equivalent integral with respect to the pullback measure under a parameterization G. [ 2 ] The proof is due to approximations of the Jordan content.