enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    [28] [29] Bartlett's test for heteroscedasticity between grouped data, used most commonly in the univariate case, has also been extended for the multivariate case, but a tractable solution only exists for 2 groups. [30] Approximations exist for more than two groups, and they are both called Box's M test.

  3. White test - Wikipedia

    en.wikipedia.org/wiki/White_test

    Conversely, a “large" R 2 (scaled by the sample size so that it follows the chi-squared distribution) counts against the hypothesis of homoskedasticity. An alternative to the White test is the Breusch–Pagan test, where the Breusch-Pagan test is designed to detect only linear forms of heteroskedasticity. Under certain conditions and a ...

  4. Goldfeld–Quandt test - Wikipedia

    en.wikipedia.org/wiki/Goldfeld–Quandt_test

    In statistics, the Goldfeld–Quandt test checks for heteroscedasticity in regression analyses. It does this by dividing a dataset into two parts or groups, and hence the test is sometimes called a two-group test. The Goldfeld–Quandt test is one of two tests proposed in a 1965 paper by Stephen Goldfeld and Richard Quandt. Both a parametric ...

  5. Glejser test - Wikipedia

    en.wikipedia.org/wiki/Glejser_test

    Step 3: Select the equation with the highest R 2 and lowest standard errors to represent heteroscedasticity. Step 4: Perform a t-test on the equation selected from step 3 on γ 1 . If γ 1 is statistically significant, reject the null hypothesis of homoscedasticity.

  6. Multivariate statistics - Wikipedia

    en.wikipedia.org/wiki/Multivariate_statistics

    Multivariate statistics is a subdivision of statistics encompassing the simultaneous observation and analysis of more than one outcome variable, i.e., multivariate random variables. Multivariate statistics concerns understanding the different aims and background of each of the different forms of multivariate analysis, and how they relate to ...

  7. Homogeneity and heterogeneity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Homogeneity_and...

    Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics , a sequence of random variables is homoscedastic ( / ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k / ) if all its random variables have the same finite variance ; this is also known as homogeneity of variance.

  8. Autoregressive conditional heteroskedasticity - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_conditional...

    Spatial GARCH processes by Otto, Schmid and Garthoff (2018) [15] are considered as the spatial equivalent to the temporal generalized autoregressive conditional heteroscedasticity (GARCH) models. In contrast to the temporal ARCH model, in which the distribution is known given the full information set for the prior periods, the distribution is ...

  9. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Julia, the CovarianceMatrices.jl package [11] supports several types of heteroskedasticity and autocorrelation consistent covariance matrix estimation including Newey–West, White, and Arellano. In R , the packages sandwich [ 6 ] and plm [ 12 ] include a function for the Newey–West estimator.