Search results
Results from the WOW.Com Content Network
Parts-per-million chart of the relative mass distribution of the Solar System, each cubelet denoting 2 × 10 24 kg. This article includes a list of the most massive known objects of the Solar System and partial lists of smaller objects by observed mean radius.
The rotation of Jupiter's polar atmosphere is about five minutes longer than that of the equatorial atmosphere. [135] The planet is an oblate spheroid, meaning that the diameter across its equator is longer than the diameter measured between its poles. [85] On Jupiter, the equatorial diameter is 9,276 km (5,764 mi) longer than the polar ...
Approximate sizes of the planets relative to each other. Outward from the Sun, the planets are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. Jupiter's diameter is about 11 times that of the Earth's and the Sun's diameter is about 10 times Jupiter's. The planets are not shown at the appropriate distance from the Sun.
Thus, the Sun occupies 0.00001% (1 part in 10 7) of the volume of a sphere with a radius the size of Earth's orbit, whereas Earth's volume is roughly 1 millionth (10 −6) that of the Sun. Jupiter, the largest planet, is 5.2 AU from the Sun and has a radius of 71,000 km (0.00047 AU; 44,000 mi), whereas the most distant planet, Neptune, is 30 AU ...
A size comparison of Neptune and Earth. Neptune's mass of 1.0243 × 10 26 kg [8] is intermediate between Earth and the larger gas giants: it is 17 times that of Earth but just 1/19th that of Jupiter. [g] Its gravity at 1 bar is 11.15 m/s 2, 1.14 times the surface gravity of Earth, [71] and surpassed only by Jupiter. [72]
This template is to show size comparison of Jupiter, Neptune and the Earth alongside extrasolar planets that have their radial size confirmed. {{ Planetary radius | radius = <!--simplified number of the radius (Jupiter equals 100px)--> }}
The sizes are listed in units of Jupiter radii (R J, 71 492 km).This list is designed to include all planets that are larger than 1.6 times the size of Jupiter.Some well-known planets that are smaller than 1.6 R J (17.93 R 🜨 or 114 387.2 km) have been included for the sake of comparison.
The ecliptic remains within 3° of the invariable plane over five million years, [2] but is now inclined about 23.44° to Earth's celestial equator used for the coordinates of poles. This large inclination means that the declination of a pole relative to Earth's celestial equator could be negative even though a planet's north pole (such as ...