Search results
Results from the WOW.Com Content Network
In computer science, a disjoint-set data structure, also called a union–find data structure or merge–find set, is a data structure that stores a collection of disjoint (non-overlapping) sets. Equivalently, it stores a partition of a set into disjoint subsets .
In the paper, [4] the authors develop a new data structure called bag-structure. Bag structure is constructed from the pennant data structure. A pennant is a tree of 2 k nodex, where k is a nonnegative integer. Each root x in this tree contains two pointers x.left and x.right to its children.
Trie data structures are commonly used in predictive text or autocomplete dictionaries, and approximate matching algorithms. [11] Tries enable faster searches, occupy less space, especially when the set contains large number of short strings, thus used in spell checking , hyphenation applications and longest prefix match algorithms.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
State-based CRDTs (also called convergent replicated data types, or CvRDTs) are defined by two types, a type for local states and a type for actions on the state, together with three functions: A function to produce an initial state, a merge function of states, and a function to apply an action to update a state. State-based CRDTs simply send ...
In computer science, k-way merge algorithms or multiway merges are a specific type of sequence merge algorithms that specialize in taking in k sorted lists and merging them into a single sorted list. These merge algorithms generally refer to merge algorithms that take in a number of sorted lists greater than two.
Next, use a disjoint-set data structure, with a set of vertices for each component, to keep track of which vertices are in which components. Creating this structure, with a separate set for each vertex, takes V operations and O(V) time. The final iteration through all edges performs two find operations and possibly one union operation per edge.
An efficient implementation using a disjoint-set data structure can perform each union and find operation on two sets in nearly constant amortized time (specifically, (()) time; () < for any plausible value of ), so the running time of this algorithm is essentially proportional to the number of walls available to the maze.