Search results
Results from the WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The small particle size also implies that the disturbed flow can be found in the limit of very small Reynolds number, leading to a drag force given by Stokes' drag. Unsteadiness of the flow relative to the particle results in force contributions by added mass and the Basset force. The BBO equation states:
A CFD-DEM model is suitable for the modeling or simulation of fluid-solids or fluid-particles systems. In a typical CFD-DEM model, the phase motion of discrete solids or particles is obtained by the Discrete Element Method (DEM) which applies Newton's laws of motion to every particle [1] and the flow of continuum fluid is described by the local averaged Navier–Stokes equations that can be ...
The solution to both these problems comes from the Higgs mechanism, which involves scalar fields (the number of which depend on the exact form of Higgs mechanism) which (to give the briefest possible description) are "absorbed" by the massive bosons as degrees of freedom, and which couple to the fermions via Yukawa coupling to create what looks ...
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
The original Langevin equation [1] [2] describes Brownian motion, the apparently random movement of a particle in a fluid due to collisions with the molecules of the fluid, = + (). Here, v {\displaystyle \mathbf {v} } is the velocity of the particle, λ {\displaystyle \lambda } is its damping coefficient, and m {\displaystyle m} is its mass.
The PIC was originally conceived to solve problems in fluid dynamics, and developed by Harlow at Los Alamos National Laboratory in 1957. [1] One of the first PIC codes was the Fluid-Implicit Particle (FLIP) program, which was created by Brackbill in 1986 [2] and has been constantly in development ever since. Until the 1990s, the PIC method was ...
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.