Search results
Results from the WOW.Com Content Network
A sphere enclosed by its axis-aligned minimum bounding box (in 3 dimensions) In geometry, the minimum bounding box or smallest bounding box (also known as the minimum enclosing box or smallest enclosing box) for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie.
In computational geometry, the smallest enclosing box problem is that of finding the oriented minimum bounding box enclosing a set of points. It is a type of bounding volume. "Smallest" may refer to volume, area, perimeter, etc. of the box. It is sufficient to find the smallest enclosing box for the convex hull of the objects in question. It is ...
A series of geometric shapes enclosed by its minimum bounding rectangle. In computational geometry, the minimum bounding rectangle (MBR), also known as bounding box (BBOX) or envelope, is an expression of the maximum extents of a two-dimensional object (e.g. point, line, polygon) or set of objects within its x-y coordinate system; in other words min(x), max(x), min(y), max(y).
Some instances of the smallest bounding circle. The smallest-circle problem (also known as minimum covering circle problem, bounding circle problem, least bounding circle problem, smallest enclosing circle problem) is a computational geometry problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane.
For example, it is possible to pack 147 rectangles of size (137,95) in a rectangle of size (1600,1230). Packing different rectangles in a rectangle : The problem of packing multiple rectangles of varying widths and heights in an enclosing rectangle of minimum area (but with no boundaries on the enclosing rectangle's width or height) has an ...
The choice of bounding volume is determined by a trade-off between two objectives. On the one hand, bounding volumes that have a very simple shape need only a few bytes to store them, and intersection tests and distance computations are simple and fast. On the other hand, bounding volumes should fit the corresponding data objects very tightly.
Unfortunately, intersection tests become quickly more expensive as the bounding boxes become more sophisticated. A bounding box or minimum bounding box (MBB) is a cuboid, or in 2-D a rectangle, containing the object. In dynamical simulation, bounding boxes are preferred to other shapes of bounding volume such as bounding spheres or cylinders ...
Another, more simplistic heuristic is the "global" heuristic [4] which only requires an axis-aligned bounding box, rather than the full set of primitives, making it much more suitable for a fast construction. The general construction scheme for a BIH: calculate the scene bounding box