Search results
Results from the WOW.Com Content Network
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
It is easy to find a threshold value θ, the smallest value such that the edges of weight θ form a 2-connected graph. Then θ provides a valid lower bound on the bottleneck TSP weight, for the bottleneck TSP is itself a 2-connected graph and necessarily contains an edge of weight at least θ .
Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .
In Haskell, the polymorphic function map :: (a -> b) -> [a] -> [b] is generalized to a polytypic function fmap :: Functor f => (a -> b) -> f a -> f b, which applies to any type belonging the Functor type class. The type constructor of lists [] can be defined as an instance of the Functor type class using the map function from the previous example:
The longest increasing subsequence problem is closely related to the longest common subsequence problem, which has a quadratic time dynamic programming solution: the longest increasing subsequence of a sequence is the longest common subsequence of and , where is the result of sorting.
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
Consider finding a shortest path for traveling between two cities by car, as illustrated in Figure 1. Such an example is likely to exhibit optimal substructure. That is, if the shortest route from Seattle to Los Angeles passes through Portland and then Sacramento, then the shortest route from Portland to Los Angeles must pass through Sacramento too.
Their exact values are not known, but upper and lower bounds on their values have been proven, [15] and it is known that they grow inversely proportionally to the square root of the alphabet size. [16] Simplified mathematical models of the longest common subsequence problem have been shown to be controlled by the Tracy–Widom distribution. [17]