Search results
Results from the WOW.Com Content Network
The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.
The "visible" hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. Four lines (counting from the right) are formally in the visible range. Lines five and six can be seen with the naked eye, but are considered to be ultraviolet as they have wavelengths less than 400 nm.
A hydrogen atom with proton and electron spins aligned (top) undergoes a flip of the electron spin, resulting in emission of a photon with a 21 cm wavelength (bottom) The hydrogen line, 21 centimeter line, or H I line [a] is a spectral line that is created by a change in the energy state of solitary, electrically neutral hydrogen atoms.
In spectroscopy, collision-induced absorption and emission refers to spectral features generated by inelastic collisions of molecules in a gas. Such inelastic collisions (along with the absorption or emission of photons) may induce quantum transitions in the molecules, or the molecules may form transient supramolecular complexes with spectral features different from the underlying molecules.
In the IR spectrum, hydrogen bonding shifts the X−H stretching frequency to lower energy (i.e. the vibration frequency decreases). This shift reflects a weakening of the X−H bond. Certain hydrogen bonds - improper hydrogen bonds - show a blue shift of the X−H stretching frequency and a decrease in the bond length. [26]
The presence of other molecules close to the molecule involved affects both line width and line position. It is the dominant process for liquids and solids. An extreme example of this effect is the influence of hydrogen bonding on the spectra of protic liquids. Observed spectral line shape and line width are also affected by instrumental factors.
The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a transition from a high energy state to a lower energy state.
This is reflected in the absorption or emission spectrum of the solute as differences in the position, intensity, and shape of the spectroscopic bands. When the spectroscopic band occurs in the visible part of the electromagnetic spectrum, solvatochromism is observed as a change of colour. This is illustrated by Reichardt's dye, as shown in the ...