Search results
Results from the WOW.Com Content Network
Draw an equilateral triangle ABC with side length 2 and with point D as the midpoint of segment BC. Draw an altitude line from A to D. Then ABD is a 30°–60°–90° triangle with hypotenuse of length 2, and base BD of length 1. The fact that the remaining leg AD has length √ 3 follows immediately from the Pythagorean theorem.
The process of drawing the altitude from a vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection. Altitudes can be used in the computation of the area of a triangle: one-half of the product of an altitude's length and its base's length (symbol b) equals the triangle's area: A = h b /2 ...
In geometry, calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is = /, where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a ...
A triangle can be uniquely determined in this sense when given any of the following: [1] [2] Three sides (SSS) Two sides and the included angle (SAS, side-angle-side) Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length. A side and the two angles adjacent to it (ASA)
Shrink the triangle to 1 / 2 height and 1 / 2 width, make three copies, and position the three shrunken triangles so that each triangle touches the two other triangles at a corner (image 2). Note the emergence of the central hole—because the three shrunken triangles can between them cover only 3 / 4 of the area of the ...
A flow is a process in which the points of a space continuously change their locations or properties over time. More specifically, in a one-dimensional geometric flow such as the curve-shortening flow, the points undergoing the flow belong to a curve, and what changes is the shape of the curve, its embedding into the Euclidean plane determined by the locations of each of its points. [2]
"A succession of shears will enable us to reduce any figure bounded by straight lines to a triangle of equal area." "... we may shear any triangle into a right-angled triangle, and this will not alter its area. Thus the area of any triangle is half the area of the rectangle on the same base and with height equal to the perpendicular on the base ...
The opening of the dark-blue square by a disk, resulting in the light-blue square with round corners. In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring element B: