Search results
Results from the WOW.Com Content Network
Templates are a feature of the C++ programming language that allows functions and classes to operate with generic types.This allows a function or class declaration to reference via a generic variable another different class (built-in or newly declared data type) without creating full declaration for each of these different classes.
Partial template specialization is a particular form of class template specialization. Usually used in reference to the C++ programming language , it allows the programmer to specialize only some arguments of a class template, as opposed to explicit full specialization, where all the template arguments are provided.
Template specialization allows the template creator to write different implementations and to specify the characteristics that the parameterized type(s) must have for each implementation to be used. Unlike function templates, class templates can be partially specialized. That means that an alternate version of the class template code can be ...
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism , and it is a form of F -bounded quantification .
The use of templates as a metaprogramming technique requires two distinct operations: a template must be defined, and a defined template must be instantiated.The generic form of the generated source code is described in the template definition, and when the template is instantiated, the generic form in the template is used to generate a specific set of source code.
The variadic template feature of C++ was designed by Douglas Gregor and Jaakko Järvi [1] [2] and was later standardized in C++11. Prior to C++11, templates (classes and functions) could only take a fixed number of arguments, which had to be specified when a template was first declared. C++11 allows template definitions to take an arbitrary ...
The following is a declaration of the concept "equality_comparable" from the <concepts> header of a C++20 standard library. This concept is satisfied by any type T such that for lvalues a and b of type T, the expressions a==b and a!=b as well as the reverse b==a and b!=a compile, and their results are convertible to a type that satisfies the concept "boolean-testable":
When a class template like equal_comparable is instantiated, the in-class friend definitions produce nontemplate (and nonmember) functions (operator functions, in this case). At the time the idiom was introduced (1994), the C++ language did not define a partial ordering for overloaded function templates and, as a result, overloading function ...