Search results
Results from the WOW.Com Content Network
Carbon on Earth naturally occurs in two stable isotopes, with 98.9% in the form of 12 C and 1.1% in 13 C. [1] [8] The ratio between these isotopes varies in biological organisms due to metabolic processes that selectively use one carbon isotope over the other, or "fractionate" carbon through kinetic or thermodynamic effects. [1]
Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).
The reaction center found in Rhodopseudomonas bacteria is currently best understood, since it was the first reaction center of known structure and has fewer polypeptide chains than the examples in green plants. [1] A reaction center is laid out in such a way that it captures the energy of a photon using pigment molecules and turns it into a ...
Two families of reaction centers in photosystems can be distinguished: type I reaction centers (such as photosystem I in chloroplasts and in green-sulfur bacteria) and type II reaction centers (such as photosystem II in chloroplasts and in non-sulfur purple bacteria). The two photosystems originated from a common ancestor, but have since ...
These dyes permitted the finding of electron transport chains during photosynthesis. Dichlorophenolindophenol (DCPIP), an example of these dyes, is widely used by experimenters. DCPIP is a dark blue solution that becomes lighter as it is reduced. It provides experimenters with a simple visual test and easily observable light reaction. [8]
The photosynthetic efficiency (i.e. oxygenic photosynthesis efficiency) is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction 6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2
A light-harvesting complex consists of a number of chromophores [1] which are complex subunit proteins that may be part of a larger super complex of a photosystem, the functional unit in photosynthesis. It is used by plants and photosynthetic bacteria to collect more of the incoming light than would be captured by the photosynthetic reaction ...
Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the energy-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants, algae, and cyanobacteria.